flexcell三维细胞组织牵张拉伸系统
分类: 最上层  发布时间: 2015-05-21 09:34 

flexcell三维细胞组织牵张拉伸系统
flexcell三维细胞组织牵张拉伸系统是由世联博研(香港)科技有限公司代理或销售的flexcell品牌的仪器,产品来源于美国。世联博研(香港)科技有限公司是中国最权威的flexcell三维细胞组织牵张拉伸系统销售服务商之一,在北京等地方销售flexcell三维细胞组织牵张拉伸系统已经多年。同时,生物在线为您提供众多企业flexcell三维细胞组织牵张拉伸系统仪器产品及图片,以便挑选到性价比高,合适的flexcell三维细胞组织牵张拉伸系统产品

 

产品英文名称: Full-automatic 3D cell&Tissue 、 Mechanical stimulation Culture System
产品中文名称:全自动基质凝胶支架三维细胞应力加载培养系统
产品编号:FX-5000TT    产品品牌:flexcell
价格/规格:询价
FLEXCELL 全自动体外三维细胞组织应力培养系统,它允许研究者创建 Amino、Collagen (Type I or IV)、Elastin、 ProNectin (RGD)、Laminin (YIGSR)多种包被表面的三维基质
、水凝胶支架,充分保障三维状态下的细胞组织的水分交换、营养交换和废物排除以及强健的细胞粘附能力。
系统的独特性在于,细胞球体在维持三维结构的同时粘附在培养板上,其优势在于操作更简便而且细胞的活性也更高
水凝胶是一种状似果冻的物质,具有高弹性、吸水性的聚合物组成的网状物,用于组织工程中,作为帮助细胞生长和发展的支架.
利用立体水凝胶支架作为平台,观察不同细胞的交互作用,建立组织和器官。同时通过在立体环境中培育细胞,有助于更深入地了解细胞过程和交互作用.
FLEXCELL 全自动体外三维细胞组织应力培养系统在基质凝胶中进行三维细胞培养、构建人工生物组织,可为三维细胞、组织提供双轴向应力和单轴向应力加载。
是当今科研界最先进的逼真模拟体内自然环境(三维环境和细胞组织实时应力环境)的三维细胞培养系统。
系统功能亮点:

 

  • 真正意义上的三维培养——该系统以多种包被表面(Amino、Collagen (Type I or IV)、Elastin、 ProNectin (RGD)、Laminin (YIGSR))的水凝胶为细胞外基质支架——水凝胶支架在液态时包裹细胞,固态时形成交联网络,细胞粘附力强,良好水分、养分交换

 

在生物材料支架研究方面,与传统的纳米纤维支架和多孔支架相比,水凝胶支架交联网络中含有大量水分,可以很好地供给细胞养分,比纳米纤维支架力学性优越。

同时还可以交联生物活性因子调节细胞的生长和分化,因此水凝胶支架可以更好地模拟细胞生长所需的类组织样物理和空间结构,
并且可塑性高、制作工艺相对简单、临床应用方便。由于胶原蛋白是人体内含量最丰富的蛋白(约占总蛋白25%),是细胞外基质
中最常见的蛋白质,胶原蛋白纤维上还有精氨酸一甘氨酸一天冬氨酸等氨基酸序列,可以为细胞表层整合蛋白所识别和贴附。
并且胶原蛋白本身是天然材料免疫排斥反应小,而且其交联过程不需其他化学试剂的引入,可自我交联形成凝胶三维支架,其生
物相容性更为突出。因此,胶原水凝胶受到人们的广泛关注。
水凝胶支架三维培养优越性:
A)、多微孔支架: 多微孔支架使用方便,但它的孔径(-1 O0 pm)远大于平均细胞直径(一10 pm),因此实际相当于二维培养。
B)纳米纤维支架: 纳米纤维支架使用纤维状的细胞外基质蛋白更好地模拟了三维结构, 但是它的力学性能很难达到使用要求。而水凝胶支架因在液态时包裹细胞,固态时形成交联网络,
可使大量细胞分散黏附于其中,使移植细胞都能接触基质,这才相当于真正意义上的三维培养。
而且胶原凝胶是含水凝胶,营养物可以自由进出凝胶网络,使分散于网络 中的细胞都能得到营养,因此胶原水凝胶具有良好的亲水性及细胞相容性。
除此之外,液态胶原易于添加各种生长因子,对细胞生长及分化起到重要作用。

 

  • 可对三维细胞进行牵张应力加载培养,便于细胞形变研究和细胞生长动力学研究(肿瘤细胞、癌细胞往往形态发生变化)
通过Flexcell应力加载系统和三维细胞应力加载传导仪对生长在三维环境下的细胞进行单轴向 或者双轴向的静态或者周期性的应力加载刺激培养,
在模拟自然体内环境下,更逼真体外模拟癌细胞、肿瘤细胞进行研究。
(Apply Strain to Cells in Three-Dimensional Gel Culture)
  • 适合长期的三维细胞培养:细胞在Tissue Train三维培养板中生长可以自行生成3D细胞外基质,这样的细胞球体与体内组织更为相似,也可以实现与其他类型的细胞共培养,如内皮细胞、基质细胞和上皮细胞等
  • 三维细胞培养:使用三维组织培养模具和三维细胞培养板在凝胶支架里全自动三维培养
 
1)三维组织培养模具和三维细胞培养板类型丰富:
2)具有氨基酸包被表面、胶原(I型或IV)包被表面、弹性蛋白包被表面、ProNectin(RGD)包被表面、层粘连蛋白(YIGSR)包被表面的三维培养板,以增强细胞粘附能力。
科研者根据自己的细胞,有针对性的选择适合包被表面三维培养板
3)具有可牵拉双轴向和单轴向拉力刺激加载三维组织培养板。
  • 大体积三维生物人工组织构建:可构建长度达35mm的生物人工组织
  • 动力模拟实验:可建立特制的各种模拟实验:心率模拟实验、步行模拟实验、跑动模拟实验和其他动力模拟实验
  • 本系统技术先进性:
1)安全快速的扩增细胞
2)在细胞特异性基质中进行三维的细胞高密度培养
3)扩增并获得可用于治疗的有活性的原代细胞
4)在控制分化状态的条件下扩增干细胞
5)向植入的一代细胞提供植入支架
6)长期培养分泌细胞
7)高效生产重组蛋白和疫苗
8)生产优质的糖蛋白
9)三维培养与应力刺激(形变)有机结合
10)三维凝胶压实自动测量与面积自动计算
  • 可用于多个领域,如研究、生物制药加工;也可为细胞和组织培养工作提供解决方案:
1)可用于干细胞和胚体扩增及定向分化
2)可用于细胞和组织治疗的细胞制备
3)可用于克隆细胞,为器官移植做准备(例如hip stem, heart valve, graft)
4)可用于制备天然的生物制品(例如糖蛋白、病毒、病毒样颗粒)
  • 观察细胞应力作用下实时反映:
使用Flexcell独有的Flexcell StageFlexer显微附属设备,可在加力刺激的同时实时观察细胞在三维状态下牵拉刺激的反应
  • 多种基质蛋白包被的尼龙网锚可以加强细胞与三维网锚的粘附结合能力

系统组织部件:

1. 原装FlexSoft® FX-5000™、Microsoft Windows7、Microsoft Office 2010、Adobe Acrobat的电脑主机
2. FX5K™ Tension FlexLink三维细胞可加力刺激培养传导控制仪
3. Flexcell BioFlex® baseplate三维细胞可加力刺激培养基板
4. Four gaskets四块密封垫片
5. Four Arctangle® Loading Stations™线型的三维培养模具
6. Four Trough Loaders™线型的三维培养模具装载站
7. Four Arctangle® Loading Stations™梯度型的三维培养模具
8. Trapezoidal Trough Loaders梯度型的三维培养模具装载站
9. 硅胶润滑脂
10. Plexiglas密封板
11. 干燥过滤器
12. FLEX IN 6.4mm外径蓝色硅胶管 13. FLEX OUT 9.5mm外径自然色硅胶管 14. 9.5mm外径蓝色加力泵链接硅胶管 15. 220V/110V电压自适应安全保护插排
16. 2个滤水器
17. D8C正空负压动力泵
18. Collagel® 3D水凝胶配套件
Introduction
Formation of tissues in vitro that are structurally and functionally viable requires several basic conditions, such as 1) cells 2) matrix 3) media and growth factors and 4) mechanical stimulation.
在体外可行构建组织在结构上和功能上需要一些基本条件,如1)细胞2)矩阵3)培养基和生长因子和4)机械刺激。
These conditions are linked to each other and act in conjunction to form a structurally robust tissue that can withstand biomechanical forces.
这些条件都彼此连接并充当结合,以形成一个能够承受生物机械力的结构强健的组织。
As a tissue develops, its cells fabricate an extracellular matrix in a given geometry according to developmental pathway cues. 作为一个组织发开,它的细胞制备按照发育途径制备线索在一个给定几何形状中细胞外基质
Several signal transduction pathways may be involved in generating the composition of the extracellular matrix.
一些信号传导通路可能参与了细胞外基质的组合物的产生形成。
Some of these pathways are regulated by mechanical deformation of cell matrix and transmitted into the cell via membrane bound proteins such as integrins, focal adhesion complexes (mechanosensory complex), cell adhesion molecules and ion channels. Cells can also respond to ligands, such as cytokines, hormones or growth factors that are released as a result of matrix deformation.
这些通路中有些是由细胞基质的机械变形调节,通过膜结合的蛋白质传递到细胞,如整合素,粘着斑复合物(mechanosensory复杂),细胞粘附分子和离子通道。细胞还可以响应配体,如细胞因子,***或释放为基质的变形而产生的生长因子。
 
In order to maintain the integrity and strength of musculoskeletal tissues, the cells may require maintaining a certain level of intrinsic strain. In the absence of this intrinsic strain, the tissue will lose its strength leading to failures or fractures.
It is well accepted that immobilization of limbs, bed rest or a reduction in the intrinsic strain level in a tissue leads to bone mineral loss, tissue atrophy, weakness and in general, a reduction in anabolic activity and an increase in catabolic activity. Physical activity, on the other hand, results in anabolic effects including an increase in biomechanical strength and an increase in the intrinsic strain in a tissue. 
To generate a tissue in vitro that is more or less equivalent to the native tissues, it is of utmost importance to create an environment that would mimic the in vivo conditions. Culturing cells in a mechanically active environment increases cell metabolism and alters cell shape and other properties. Therefore, it is vital to create and maintain a mechanically active environment (i.e., tension, shear stress or compression) for the cells during the formation of tissues in vitro. In addition to the dynamic environment, culturing cells in 3D environment more closely simulates the native environment than a static 2D culture method. 
 
The size and shape of the tissue matrix would also directly affect the type, magnitude, direction and distribution of physiological forces within the tissue matrix. The composition of tissue may also depend on the types of forces that the tissue undergoes. Depending on the anatomical location, some tissues may experience both tensile and compressive forces within the tissue leading to multiple compositions. For example, the midsubstance (where tensile forces exist) of an Achilles tendon is comprised of dense fibrous connective tissue, while the area where tendon presses against calcaneus (where compressive forces exist) is comprised of fibrocartilaginous tissue. The shape of the tissue also plays a major role in the location of its failure. Most failures in Achilles tendons occur at the calcaneal junction where it joins the bone and has the least thickness. Therefore, it is clear that the native shape of the tissue needs to be simulated in vitro to facilitate studying the failure mechanism as well as the healing mechanism of tissues. Flexcells Tissue Train® Culture System was developed to address these segments of the culture world, providing both a 3D matrix, dynamic strain to cells and matrix, and multiple geometries for creating bioartificial tissues of different shapes (i.e., linear, trapezoidal, and circular). 

 

 
 
Tissue Train® System
Flexcells Tissue Train™ Culture System is a stand-alone 3D culture system that allows investigators to create 3D geometries for cell culture in a matrix gel or allow the cells to build a self-assembled matrix that connects to the anchors in a Tissue Train® culture plate. Flexcell currently has molds and/or plates for creating three different shaped hydrogels: linear, trapezoidal, and circular. The Tissue Train®System can be used to create bioartificial constructs with cells from the cardiac, musculoskeletal, dermal, lung, gastrointestinal, bone marrow, and adipose tissues to name a few. (See our Publication Database to see how researchers are currently using this system).
 
Figure 1 illustrates how a linear bioartificial tissue (BAT) is created with the Tissue Train® Culture System. In brief, a Tissue Train® culture plate is set atop a Trough Loader™ and a vacuum is applied with the FX-5000™ Tension System pulling the flexible-bottomed rubber membrane of the culture plate downward into the linear trough. A cell and gel matrix suspension is dispensed into the trough between the two anchor stems with a pipette. After polymerization, the vacuum is released and a linear hydrogel, or bioartificial tissue, has been created that is attached to the culture plate via the anchor stems at the east and west poles.
 
 
Pathways
Figure 1. Bioartificial tissue development with the Tissue Train® Culture System.
 
The FX-5000™ Tension System provides the investigator with a tool to apply regulated uniaxial or equibiaxial strain to the growing bioartificial tissues. A user can define a frequency, elongation and duration of strain in a regimen that simulates the strain environment of the native tissue in the body (see Applying Mechanical Load to Cells in 3D Culture for further information). 
 
View video Tissue Train® Bioartificial Tissue Fabrication with Uniaxial Strain
 
Additionally, the cells will remodel their extracellular matrix over time (Figure 2). A measure of this remodeling is gel compaction over time. ScanFlex™ is an automated image collection system that allows users to periodically scan items placed on a scanner bed. The ScanFlex™ software controls a digital scanner and allows users to program the number of times and the time intervals when digital scans are taken. When used in conjunction with the Tissue Train® culture plates, ScanFlex™ can be used to determine the change in area of a bioartificial tissue. Furthermore, the area of a BAT can be measured using the XyFlex™ image analysis software. XyFlex™ software allows the user to automatically measure the BAT area in a large sequence of images.
 
 
Pathways
Figure 2. Illustration of gel compaction in a bioartificial tissue.

TISSUE TRAIN®AND 3D CULTURE SYSTEM 应用文献

  1. Abraham T, Kayra D, McManus B, Scott A. Quantitative assessment of forward and backward second harmonic three dimensional images of collagen Type I matrix remodeling in a stimulated cellular
environment. J Struct Biol 180(1):17-25, 2012. doi: 10.1016/j.jsb.2012.05.004. Epub 2012 May 15.
  • Ahearne M, Bagnaninchi PO, Yang Y, El Haj AJ. Online monitoring of collagen fibre alignment in tissue-engineered tendon by PSOCT. J Tissue Eng Regen Med 2(8):521-524, 2008.
  • Allison DA, Wight TN, Ripp NJ, Braun KR, Grande-Allen KJ. Endogenous overexpression of hyaluronan synthases within dynamically cultured collagen gels: Implications for vascular and valvular disease. Biomaterials 29:2969-2976, 2008.
  • Charoenpanich A, Wall ME, Tucker CJ, Andrews DM, Lalush DS, Loboa EG.Microarray analysis of human adipose-derived stem cells in three-dimensional collagen culture: osteogenesis inhibits bone morphogenic protein and Wnt signaling pathways, and cyclic tensile strain causes upregulation of proinflammatory cytokine regulators and angiogenic factors. Tissue Eng Part A 17(21-22):2615-2627, 2011. Epub 2011 Jul 18.
  • Clause KC, Tinney JP, Liu LJ, Gharaibeh B, Huard J, Kirk JA, Shroff SG, Fujimoto KL, Wagner WR, Ralphe JC, Keller BB, Tobita K. A three-dimensional gel bioreactor for assessment of cardiomyocyte induction in skeletal muscle-derived stem cells. Tissue Eng Part C Methods 16(3):375-385, 2010.
  • Clause KC, Tinney JP, Liu LJ, Keller BB, Tobita K. Engineered early embryonic cardiac tissue increases cardiomyocyte proliferation by cyclic mechanical stretch via p38-MAP kinase phosphorylation. Tissue Engineering Part A 15(6):1373-1380, 2009.
  • Clause KC, Tinney JP, Liu JL, Keller BB, Huard J, Tobita K. p38MAP-kinase regulates cardiomyocyte proliferation and contractile properties of engineered early embryonic cardiac tissue [abstract]. Weinstein Cardiovascular Development Research Conference, Indianapolis, IN, 2007.
  • Clause KC, Tinney JP, Liu JL, Gharaibeh B, Fujimoto LK, Wagner WR, Ralphe JC, Keller BB, Huard J, Tobita K. Functioning engineered cardiac tissue from skeletal muscle derived stem cells [abstract]. 4th Annual Symposium of AHA Council on Basic Cardiovascular Sciences, Keystone CO, 2007.
  • Ferdous Z, Lazaro LD, Iozzo RV, H??k M, Grande-Allen KJ.Influence of cyclic strain and decorin deficiency on 3D cellularized collagen matrices.Biomaterials 29(18):2740-2748, 2008. Epub 2008 Apr 3.
  • Garvin J, Qi J, Maloney M, Banes AJ. Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng 9(5):967-979, 2003.
  • Henshaw DR, Attia E, Bhargava M, Hannafin JA. Canine ACL fibroblast integrin expression and cell alignment in response to cyclic tensile strain in three-dimensional collagen gels. J Orthop Res 24(3):481-490, 2006.
  • Jobling AI, Gentle A, Metlapally R, McGowan BJ, McBrien NA. Regulation of scleral cell contraction by transforming growth factor-β and stress: competing roles in myopic eye growth. J Biol Chem 284(4):2072-2079, 2009. Epub 2008 Nov 14.
  • Lee CH, Shin HJ, Cho IH, Kang YM, Kim IA, Park KD, Shin JW. Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials 26(11):1261-1270, 2005.
  • Nieponice A, Maul TM, Cumer JM, Soletti L, Vorp DA. Mechanical stimulation induces morphological and phenotypic changes in bone marrow-derived progenitor cells within a three-dimensional fibrin matrix. J Biomed Mater Res A 81(3):523-530, 2007.
  • Nourse MB, Halpin DE, Scatena M, Mortisen DJ, Tulloch NL, Hauch KD, Torok-Storb B, Ratner BD, Pabon L, Murry CE. VEGF induces differentiation of functional endothelium from human embryonic stem cells: implications for tissue engineering. Arterioscler Thromb Vasc Biol 30(1):80-89, 2010. Epub 2009 Oct 29.
  • Qi J, Chi L, Bynum D, Banes AJ. Gap junctions in IL-1β-mediated cell survival response to strain. J Appl Physiol 110(5):1425-1431, 2011. Epub 2011 Jan 6.
  • Qi J, Chi L, Faber J, Koller B, Banes AJ. ATP reduces gel compaction in osteoblast-populated collagen ??
gels. J Appl Physiol 102(3):1152-60, 2007.
  • Qi J, Chi L, Maloney M, Yang X, Bynum D, Banes AJ. Interleukin-1β increases elasticity of human
bioartificial tendons. Tissue Eng 12(10):2913-2925, 2006.
  • Qi J, Fox AM, Alexopoulos LG, Chi L, Bynum D, Guilak F, Banes AJ. IL-1β decreases the elastic
modulus of human tenocytes. J Appl Physiol 101(1):189-95, 2006.
  • Qi J, Chi L, Wang J, Sumanasinghe R, Wall M, Tsuzaki M, Banes AJ. Modulation of collagen gel
compaction by extracellular ATP is MAPK and NF-κB pathways dependent. Exp Cell Res
315(11):1990-2000, 2009. Epub 2009 Feb 23.
  • Rathbone SR, Glossop JR, Gough JE, Cartmell SH. Cyclic tensile strain upon human mesenchymal stem cells in 2D and 3D culture differentially influences CCNL2, WDR61 and BAHCC1 gene expression levels. J Mech Behav Biomed Mater 11:82-91, 2012. Epub 2012 Feb 3.
  • Sumanasinghe RD, Bernacki SH, Loboa EG. Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) mRNA expression. Tissue Eng 12(12):3459-3465, 2006.
  • Taylor SE, Vaughan-Thomas A, Clements DN, Pinchbeck G, Macrory LC, Smith RK, Clegg PD. Gene expression markers of tendon fibroblasts in normal and diseased tissue compared to monolayer and three dimensional culture systems. BMC Musculoskelet Disord 10:27, 2009.
  • Tobita K, Liu LJ, Janczewski AM, Tinney JP, Nonemaker JM, Augustine S, Stolz DB, Shroff SG, Keller BB. Engineered early embryonic cardiac tissue retains proliferative and contractile properties of developing embryonic myocardium. Am J Physiol Heart Circ Physiol 291(4):H1829-37, 2006.
  • Triantafillopoulos IK, Banes AJ, Bowman KF Jr, Maloney M, Garrett WE Jr, Karas SG. Nandrolone decanoate and load increase remodeling and strength in human supraspinatus bioartificial tendons. Am J Sports Med 32(4):934-943, 2004.
  • Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD, Pabon L, Reinecke H, Murry CE. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 109(1):47-59, 2011. Epub 2011 May 19.
  • Wen W, Chau E, Jackson-Boeters L, Elliott C, Daley TD, Hamilton DW. TGF-?1 and FAK regulate periostin expression in PDL fibroblasts. J Dent Res 89(12):1439-1443, 2010. Epub 2010 Oct 12.
该系统培养套耗材
CIRCULAR FOAM TISSUE TRAIN® CULTURE PLATES (CIRCULAR泡沫材料组织TRAIN®培养板培养板)
使用柔性底6孔培养板,用于创建和提供双轴应变到3D细胞种子凝胶构造与Flexcell组织Train®培养体系。 可用矩阵粘结泡沫圆形锚,5种不同包被培养表面:氨基酸,胶原蛋白(I型或IV型),弹力蛋白,ProNectin(RGD)和层粘连蛋白(YIGSR)。
编号产品 产品名称
TTCF-4001U-Case TTCF-4001U-Each Circular Foam Culture Plate-Untreated
TTCF-4001A-Case TTCF-4001A-Each Circular Foam Culture Plate-Amino
TTCF-4001C-Case TTCF-4001C-Each Circular Foam Culture Plate-Collagen Type I
TTCF-4001C(IV)-Case TTCF-4001C(IV)-Each Circular Foam Culture Plate-Collagen Type IV
TTCF-4001E-Case TTCF-4001E-Each Circular Foam Culture Plate-Elastin
TTCF-4001P-Case TTCF-4001P-Each Circular Foam Culture Plate-ProNectin
TTCF-4001L-Case TTCF-4001L-Each Circular Foam Culture Plate-Laminin
TISSUE TRAIN® CULTURE PLATES (组织TRAIN®培养板培养板)
编号产品 产品名称
Foruse with Standard(线形) Trough Loaders
创造和提供3D单轴应变种子细胞凝胶结构,灵活6孔培养板底用Flexcell组织列车培养系统*。 可用基质键合尼龙网锚,5种不同包被培养表面:氨基酸,胶原蛋白(I型或IV型),弹力蛋白,ProNectin(RGD)和层粘连蛋白(YIGSR)。
TT-4001U-Case TT-4001U-Each Tissue Train Culture Plate-Untreated
TT-4001A-Case TT-4001A-Each Tissue Train Culture Plate-Amino
TT-4001C-Case TT-4001C-Each Tissue Train Culture Plate-Collagen Type I
TT-4001C(IV)-Case TT-4001C(IV)-Each Tissue Train Culture Plate-Collagen Type IV
TT-4001E-Case TT-4001E-Each Tissue Train Culture Plate-Elastin
TT-4001P-Case TT-4001P-Each Tissue Train Culture Plate-ProNectin
TT-4001L-Case TT-4001L-Each Tissue Train Culture Plate-Laminin
Foruse with Trapezoidal(梯形) Trough Loaders
使用柔性底6孔培养板,用于创建和提供梯形3D细胞种子凝胶结构单轴应变与Flexcell组织Train®培养体系*。 可用基质键合尼龙网锚,5种不同包被培养表面:氨基酸,胶原蛋白(I型或IV型),弹力蛋白,ProNectin(RGD)和层粘连蛋白(YIGSR)。
编号产品 产品名称
TTTP-4001U-Case TTTP-4001U-Each Trapezoidal TT Culture Plate-Untreated
TTTP-4001A-Case TTTP-4001A-Each Trapezoidal TT Culture Plate-Amino
TTTP-4001C-Case TTTP-4001C-Each Trapezoidal TT Culture Plate-Collagen Type I
TTTP-4001C(IV)-Case TTTP-4001C(IV)-Each Trapezoidal TT Culture Plate-Collagen Type IV
TTTP-4001E-Case TTTP-4001E-Each Trapezoidal TT Culture Plate-Elastin
TTTP-4001P-Case TTTP-4001P-Each Trapezoidal TT Culture Plate-ProNectin
TTTP-4001L-Case TTTP-4001L-Each Trapezoidal TT Culture Plate-Laminin
上一产品
下一产品